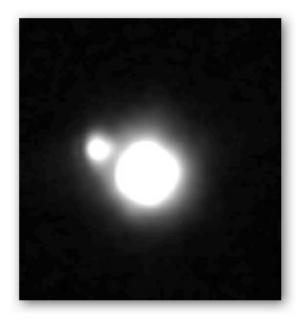
BU 787 AB: An Orbital Binary with Optical Nature

Francisco Rica Romero

Astronomical Society of Mérida – SPAIN Coordinator of LIADA's Double Star Section – ARGENTINA


frica0@gmail.com

Abstract: BU 787 AB is a double star composed of a bright and blue B9V star of 7.35 magnitude and a white (A0V) secondary of 11.9 magnitude, separated by 5.3". Erceg (1984) calculated orbital parameters for the first time for this double star. In this work, I report several CCD measures performed by some amateurs using telescopes with apertures that range from 0.2 to 0.4 meters. I suspected the possible optical nature of BU 787 AB and decided to perform a detailed astrophysical study of the stellar components and the dynamics of the double star. Several astrophysical tests were applied to determine the nature of BU 787 AB. All of them demonstrated, unambiguously, the optical nature of BU 787 AB.

Introduction

Nowadays, the works of the amateur are becoming more and more interesting because the difference between the technical levels of what professionals do and what amateurs do is closing. Rica (2008) reviewed some of the important work areas of amateur observers in the double star field. In an orbital calculation work, the author of this article found a binary star listed in the Sixth Catalog of Orbits of Visual Binary Stars (Hartkopf, Mason & Worley 2001) in which the basic astrophysical data looked suspect to him because of the possible optical nature for this "binary". The primary is a bright and white star (B9V/A0V) and so its luminosity (absolute magnitude) is bright. The distance modulus would be important and so the primary component would be far away from us. A distant binary with an angular separation of 5.3" in 2007/8 means that the projected separation would likely be a few hundred Astronomical Units (AU) and a large orbital period of thousands of years. But the relative (and linear) motion of B is very large and it is not what I expected for a very large orbital period (lower orbital motion is expected).

In this work I comment, in detail, on the astro-

Figure 1: BU 787 AB in an image taken March 13, 2008 by Francisco Rica using a LX200R telescope with 0.4 m objective and a focal length of 4117 mm attached to a DMK 41AU02.AS camera. The instrument is located at the Astronomical Observatory of Cantabria (Spain).

BU 787 AB: An Orbital Binary with Optical Nature

physical study for BU 787 AB (=WDS 03342+4837) to determine the nature of this pair. See Figure 1.

The Astrophysical Study

ponents and for the stellar system was performed. times. Francisco Rica, in March 2008, used a 0.4 me-The lines of the astrophysical study were published in Benavides et al. (2010) in sections 3 to 10. In the following sections, I complete the report for this study.

X-Ray activity

stars and is inversely proportional to stellar age. Astrometrica 4.0 to determine the scale and orienta-While young stars are strong X-ray emitters, old stars tion. The scale was of 0.45" per pixel. Ten images of 1 are weak X-ray emitters. There are several diagrams second of exposure time were used to determine θ and that show the relation of X-ray emission with stellar ρ using REDUC. Rafael Benavides from Cordoba age.

phere, so instruments that detect X-rays must be focal length of 5420 mm and a pixel scale of 0.41x taken to a high altitude. ROSAT was an X-ray satel- 0.38 arcseconds. lite telescope designed by Germany. It was launched in 1990 and operated until 1999. The ROSAT All-Sky ADA measures. This table has the following columns: Survey (RASS) was the first imaging X-ray survey of the epoch of the observations, in column (1); θ (in dethe entire sky. X-ray digital images show X-ray grees) and ρ (in arcseconds) values in columns (2) and sources with a very large FWHM of about 2 arcmin- (3); the number of measures in column (4); the obutes and a calculation of the centroid is difficult, so server code as listed in the WDS catalog, in column an error of even tens of arc seconds. Optical counter- official orbit. parts for the X-ray sources are not easy to identify, so the astrophysical search for optical counterparts is at ure 3 shows a plot of ρ versus epoch. The red curves an angular distance that ranges from 16 to 40 were plotted using the orbital parameters calculated arcseconds.

Photometric data

The catalog of the Two Micron All Sky Survey (Cutri et al. 2000; hereafter 2MASS) lists data for the A and B components. While the photometric quality for JHK is good for the primary component, the photometric quality for the secondary is bad and it was not used in this work.

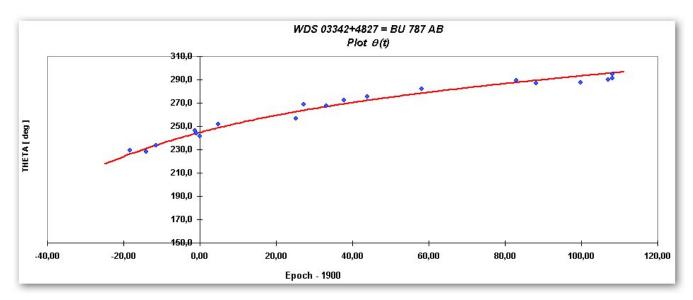
Astrometric Measures

BU 787 AB is composed of stars with magnitude 7.4 and 11.9 (WDS catalog), separated by more than 5" in the direction of 291 degrees. Since Burnham (1882) discovered its binary nature in 1881, it has had 16 measures which cover an arc of about 60 degrees; and the angular separation increased from 2.0" to 4.5". The measures performed were micrometric, with the use of a refractor or reflector telescope, but the measures were analyzed using the 2MASS CCD image. Some collaborators of the LIADA Double Star Section performed several measures in 2007-2008. These new measures are listed in Table 1 in bold font.

Our French friend Florent Losse made a measure in 2008.112 using a 0.2 meter telescope with a Barlow 2x lens (total focal length of 4340 mm). The CCD camera used was a CCD Audine with a KAF400 sensor. A detailed astrophysical study for the stellar com- Florent took 200 images with two different exposure ter LX200R telescope located in the Cantabria Astronomical Observatory (north of Spain). For the measures, a CCD ST-8XE was used at the primary focus (focal length of 4115 mm). Ten images of 15 seconds of The X-ray emission is related to the age of the exposure time were astrometrically reduced using (South of the Spain) measured this pair on January X-radiation is absorbed by the Earth's atmos- 16, 2007, using a C11 telescope (0.28 meters) with a

Table 1 lists the historical measures and the LIthe AR and DEC for the X-ray source are known with (5); last two columns list the residuals O-C with the

> Figure 2 shows a plot of θ versus epoch while Figby Erceg (1984) (see Section 4).


The Orbital Parameters

Erceg (1984) calculated the orbital parameters shown in Table 2.

Using the orbital parameters and Hipparcos parallax, a total mass of $2.602 M_{\odot}$ was obtained! This unrealistic total mass could be caused by terribly wrong orbital parameters or by an erroneous trigonometric parallax. To confirm that the orbital parameters are wrong, I obtained the typical absolute magnitude for

•		orbitur	parameters for bo ror
	Ρ	=	400.220 yr
	То	=	1831.930
	e	=	0.540
	a	=	2.8610"
	i	=	31.40°
	ω	=	331.90°
	Ω	=	147.30°

(Continued on page 140)

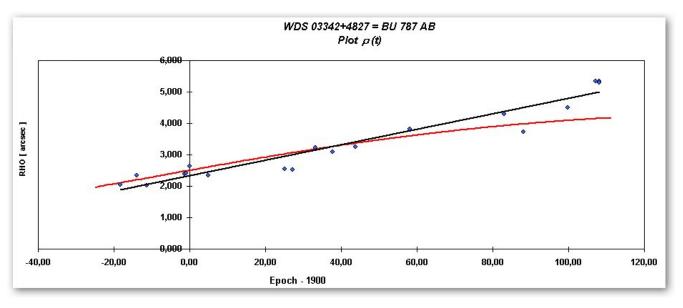


Figure 2: The plot shows the theta (θ) values vs the epoch of observations (filled blue points). The red curve was plotted using the orbital parameters calculated by Erceg (1984)

Epoch	θ[°]	ρ["]	N	Observer	Δθ[°]	Δρ["]
1881.69	228.5	2.05	3	Bu	3.01	-0.052
1885.96	227.3	2.35	1	StH	-3.12	0.157
1888.588	233.1	2.02	5	Com	-0.16	-0.230
1898.704	245.6	2.39	1	Hu	2.60	-0.080
1899.13	243.3	2.4	1	Bu	-0.07	-0.079
1899.983	241	2.64	3	Doo	-3.10	0.142
1904.84	250.9	2.33	1	Bu	2.80	-0.273
1925.17	256.2	2.54	1	Fox	-5.68	-0.482
1927.14	268.2	2.52	2	Gcb	5.18	-0.540
1933.17	267.1	3.23	1	Gcb	0.76	0.056
1937.79	271.7	3.1	3	VBs	2.98	-0.159
1943.84	274.8	3.26	1	VBs	3.12	-0.105
1958.08	281.6	3.81	1	В	3.62	0.215
1983	289	4.3	1	Hei	1.54	0.377
1988.091	287.1	3.72	1	Рор	-2.12	-0.258
1999.86	287.6	4.51	1	TMA	-5.52	0.421
2007.0442	290.3	5.33	1	BVD	-5.08	1.185
2008.112	295.0	5.34	1	LOS	-0.69	1.187
2008.1995	291.3	5.30	1	FMR	-4.42	1.147

Table 1: Observations and Residuals of WDS 03342+4827, BU 787 AB

BU 787 AB: An Orbital Binary with Optical Nature

Figure 3: The plot shows the rho (p) values vs the epoch of observations (filled blue points). The red curve was plotted using the orbital parameters calculated by Erceg (1984). The black line is a linear fit.

(Continued from page 138)

a B9V (the primary spectral type): about +0.30 to +0.35 magnitude. If I correct the V magnitude for the (-21, -36, -11) km/s was calculated. According to Egprimary by interstellar reddening (Av = +0.35), then a gen's diagrams (1969a, 1969b) BU 787 AB is a memthe parallax, a total mass of 1,716 M_{\odot} was obtained, age thin disk stars. Patience *et al.* (2002) list this douso the orbital parameters are unrealistic.

Figure 4 shows the orbit calculated by Erceg million years. (1984). The important residuals of the recent measures and the linear trajectory is evident.

Astrophysical data

The Tycho-2 catalog determined a proper motion of $+22.5 \pm 1.5$ mas/yr in RA and -27.2 ± 1.6 mas/yr in DEC. The Hipparcos trigonometric parallax of $3.83 \pm$ 0.72 mas corresponds to a distance of 261 $^{+60}/_{-40}$ pc.

In the astronomical literature, BU 787 AB has been classified as a B9V star (Jaschek, Conde, & de Sierra (1964), Morgan, Hiltner, & Garrison (1971)) and as a AOV (Kenedy (1983)). In this work a combined spectral type of B9V (in excellent agreement with literature) was obtained using BVIJHK photometry and the combined proper motion. The stellar mass for the primary component is 3.8 solar masses. The spectral type of the secondary is unknown and I assumed a value of 1.0 solar mass.

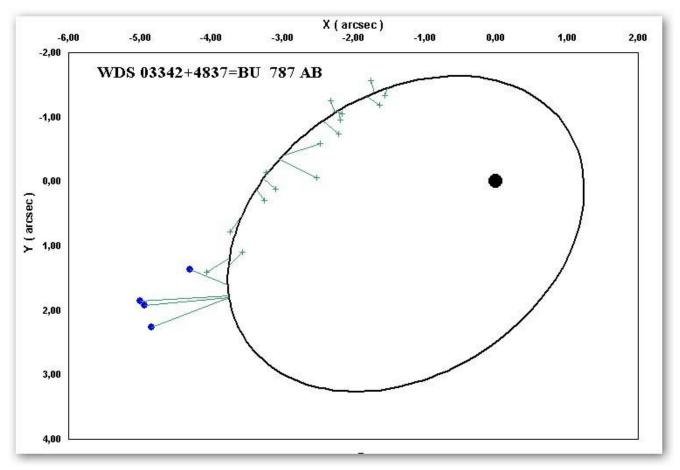
In the literature there are many radial velocity values that range from -13 km/s to +0.7 km/s.

Age and Stellar Population

In this work a galactocentric velocity of (U,V,W) =distance of 223.3 pc is obtained. This corresponds to a ber of the young galactic disk. Grenon (1987) defined parallax of about 0.0044" (in good agreement with the a kinematic age parameter, fG. A value of 0.21 for fG Hipparcos value of 0.0038"). Using this last value for was obtained in this work corresponding to middle ble star belonging to the α Persei cluster of about 50

> Tables 3 and 4 list the astrophysical parameters for the stellar components and the double star.

X-Ray Activity


ROSAT PSPC catalog lists an X-ray source near BU 787 AB. Randich et al. (1996) calculated an X-ray luminosity (log Lx) of 29.43 erg/s.

If I consult the diagram of Damiani et al. (1995), the X-ray activity of BU 787 AB is typical of a star with the age of several tens of millions of years. Giampapa, Prosser, and Fleming (1998) studied the X -ray emission of the 70 Myrs open cluster IC 4665. This cluster has an X-ray activity similar to BU 787 AB, so it can be said that BU 787 AB has a similar age with IC 4665, that is, about 70 Myrs.

BU 787 AB is a member of the α Persei cluster. This cluster has an age of about 50 Myrs, which is in good agreement with the age determined in this work by the X-ray luminosity.

Nature of BU 787 AB

Using historical measures, a weighted linear fit

BU 787 AB: An Orbital Binary with Optical Nature

Figure 4: The orbit of BU 787 AB calculated by Erceg (1984). The visual micrometric measures are plotted as plus (+). Speckle points are represented as filled blue circles. The lines join the observations with the ephemerid calculated using orbital parameters. North is down and East is right.

respect to A of $\Delta x = -24.2 \pm 1.4$ mas/yr and $\Delta y = +26.2$ tromechanics. They are described in detail in \pm 1.4 mas/yr. The baseline of the 19 measures used Benavides *et al.* (2010). The Dommanget test deterwas 126.51 years. From the proper motion of A and mined that B would be bound to A if the stellar sysrelative motion of B, I calculated $\mu(\alpha) = -1.7 \pm 2.1$ tem is nearer than 30 pc. Hipparcos calculated a mas/yr and $\mu(\delta) = -1.0 \pm 2.2$ mas/yr for B.

(much greater than 3σ) of B and A, it is likely that B A is 8.7 times greater that the limit of this criterion, is not gravitationally bound to A, and so it would be it is clear that it is an optical pair. an optical companion. But, there exists the possibility that the orbital motion is much greater that the er- lar mass, the projected separation (957 AU), and the rors in the proper motions. In this case, the proper annual variation of theta (0.499 deg/yr). This critemotion of the components would be incompatible from rion shows that the true critical value for a parabolic a mathematical point of view, but the pair of stars orbit is 379 AU³ yr⁻², while the observed projected could be gravitationally bound by orbiting the center critical value is of 66,285 AU³ yr⁻², which is much of mass, so I must confirm the nature of BU 787 AB greater than the true value, so B is not bound to A. using other tests.

(1955, 1956), Peter van de Kamp (1961) and Sinacho- is 44.6 km s⁻¹. Using the criterion of Sinachopoulos &

was performed to calculate a relative motion of B with poulos & Mouzourakis (1992)) that are based on astrigonometric parallax of 3.83 ± 0.72 mas, correspond-According to the very different proper motions ing to a distance of 261 +60/.41 pc. Since the distance for

For the criterion of van de Kamp, I need the stel-

The tangential velocity corresponding to the ob-I have used several tests (those of Dommanget served relative proper motion of B, with respect to A,

BU 787 AB: An Orbital Binary with Optical Nature

Table 3. Astrophysical data for BU 787 AB = WDS 03342+4837

	Primary	Secondary			
α ₂₀₀₀ ^{c)}	03h 34m 12.95s				
δ ₂₀₀₀ ^{c)}	+48° 37' 3.1"				
V	7.35 ^{c)}	11.9 ^{a)}			
$B - V^{C}$	+0.038 ± 0.005				
V - I ^{C)}	+0.05 ± 0.00				
K ^{b)}	7.21 ± 0.02				
$J - H^{b}$	-0.09 ± 0.06				
$H - K^{\mathrm{b})}$	+0.04 ± 0.06				
$J - K^{b}$	-0.05 ± 0.03				
$\mu(\alpha) \text{ [mas/yr]}^{d)}$	+22.5 ± 1.5				
$\mu(\delta) [mas/yr]^{d}$	-27.2 ± 1.6				
Spectral Type	B9V ^{e)} ; A0V ^{f)}				
Trigonometric Parallax, π [mas] ^{d)}	3.83 ± 0.72				
Distance [pc] ^{c)}	261 +60/	-41			
Mv ^{c)}	-0.04 ± 0.41				
Reddening, Av ^{g)}	+0.35				
Radial Velocity [km/s]	+0.7 ± 1.0 ^{h)} ;				
a) WDS catalog (Mason, Wycoff & Hartkopf (2003)); b) 2MASS (Cutri et al. 2000); c) Hipparcos (ESA 1997); d) Tycho-2 (Hog et al. 2000) ; e) Jaschek et al. (1964), Morgan, Hiltner, & Gar- rison (1971); f) Kenedy. (1983), g) Neckel, Th. & Klare (1980); h) Gontcharov (2006).					

calculated, so B is not bound to A.

Determining the nature using the total mechani- References cal energy

In this work I used the total mechanical energy, E, to determine the nature of BU 787 AB. The mathematical process is explained in detail in Brosche, Denis-Karafisan & Sinachopoulos (1992). We cannot Burnham, S. W., 1882, Publ. Washburn Obs. 1. calculate the true value of E, but we can calculate a projected value of E (using the relative tangential velocity and the projected separation), called Eo. Eo > 0is a sufficient condition for a pair being unbound and this condition is fulfilled if

Table 4: Data for BU 787 AB = WDS 03342+4837 double star

	Primary	Secondary		
Reddening, E(B-V)	+0.11			
Reddening, Av	+0.40			
V	7.35 ^{a)}	11.9 ^{b)}		
B - V ^{a)}	+0.038 ± 0.005			
V - I ^{a)}	+0.05 ± 0.00			
a) Hipparcos catalog (ESA 1997); b) WDS catalog (Mason, Wycoff & Hartkopf (2003));				

$$\lambda = \frac{V_{\text{tan}}}{V_{orb}_\max} > \sqrt{2}$$

The calculated $V_{\text{orb}_{max}}$ is 0.45 AU/yr and $\lambda \approx 21$. If I take into account the error in V_{tan} and I use the expression

$$\lambda' = \frac{V_{\rm tan} - 2\sigma}{V_{orb}}$$

then $\lambda' = 9.4$ and so BU 787 AB is not gravitationally bound.

In summary, the three tests are in agreement with the optical nature of BU 787 AB. So this pair must be flagged with the "U" code ("Proper motion or other techniques indicate that this pair is nonphysical.") in the Note column of the WDS Index Catalog.

Acknowledgements

This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Mouzou, a maximum orbital velocity of 2.1 km s⁻¹ was Observatory and the Astronomical Observatory of Cantabria (CIMA, IFCA-CSIC-UC, AAC).

Benavides, R., Rica, F., Reina, E., Castellanos, J., Naves, R., Lahuerta, L., and Lahuerta, S., 2010, JDSO, 6, 30

Cutri, R.N., et al., 2000, Explanatory to the 2MASS Second Incremental Data Release, http://www.ipac.caltech.edu/2mass/releases/ second/index.html.

BU 787 AB: An Orbital Binary with Optical Nature

- Damiani, F., Micela, G., Sciortino, S., and Harnden, F. R., Jr., 1995, ApJ, 446, 331.
- Dommanget J., 1955, "Critère de non-périodicité du mouvement relatif d'un couple stellaire visuel", Observatorio Real de Bélgica, Bull, Astron., t.20, 1955, p. 1.
- Dommanget J., 1956, "Limites rationnelles d'un catalogue d'etoiles doubles visuelles", Communications de l'Observatoire Royal de Belgique, Nº 109, Bull. Astron., t. 20, 1956, p. 183.
- Eggen O.J., 1969a, PASP, 81, 741.
- Eggen O.J., 1969b, PASP, 81, 553.
- Erceg, V. 1984, Bull. Obs. Astron. Belgrade #134, 54.
- ESA SP-1200, ESA Noordwijk, 1997.
- Giampapa, M. S., Prosser, C. F., and Fleming, T. A., 1998, ApJ, **501**, 624.
- Gontcharov, G. A., 2006, AstL, 32, 759.
- Grenon, M., 1987, JAp&A, 8, 123.
- Hartkopf, W. I., Mason, B. D., and Worley, C. E., 2001, Sixth Catalog of Orbits of Visual Binary Stars, http://www.ad.usno.navy.mil/wds/orb6/ orb6.html.

- Hog, E. et al., 2000, AJ, **355**, 27.
- Jaschek, C., Conde, H., and de Sierra, A.C., 1964, PLPla, **28**, 1.
- Mason, B. D., Wycoff, G., and Hartkopf, W. I., 2003, The Washington Double Star Catalog, http:// ad.usno.navy.mil/proj/WDS/wds.html.
- Morgan, W. W., Hiltner, W. A., and Garrison, R. F., 1971, AJ, **76**, 242.
- Patience, J., Ghez, A.M., Reid, I.N., and Matthews, K., 2002, AJ, **123**, 1570.
- Neckel, Th. and Klare, G., 1980, A&AS, 42, 251.
- Randich, S., Schmitt, J. H. M. M., Prosser, C. F., and Stauffer, J. R., 1996, A&A, 305, 785.
- Rica Romero, F., 2008, RMxAA, 44, 137.
- Sinachopoulos, D., and Mouzourakis, P., 1992, Complementary Approaches to Double and Multiple Star Research in the IAU Colloquium 135, ASP Conferences Series, Vol. 32.
- van de Kamp P., 1961, PASP, 73, 389.

